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Abstract

In 1994, University of Southern California computer scientist, Dr. Leonard Adleman solved the Hamiltonian path problem using
DNA as a computational mechanism. He proved the principle that DNA computing could be used to solve computationally complex
problems. Because of the limitations in discovery time, resource requirements, and sequence mismatches, DNA computing has not
yet become a commonly accepted practice. However, advancements are continually being discovered that are evolving the field of
DNA computing. Practical applications of DNA are not restricted to computation alone. This research presents a novel approach in
which DNA could be used as a means of storing files. Through the use of multiple sequence alignment combined with intelligent heu-
ristics, the most probabilistic file contents can be determined with minimal errors.
© 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. DNA representation of digital information

How one approaches a problem is often defined in how
the problem is represented. Various representations lend
themselves to a set of predefined actions that can easily
shape one’s perspective and approach in the quest for the
solution. For example, when presented with the problem
of determining the time at which a thrown ball is at a given
height, represented by the following equation [1]

h = vtsin(4) — (1/2)Gt* (1)

where /£ is the height at time ¢, v is velocity, ¢ the time in air,
A the angle at which thrown, G the universal gravitational
constant, it is possible to algebraically solve for the corre-
sponding time values. However, it is easier to graph the
associated equation of height as a function of time as
shown in Fig. 1, referencing the graph for the correspond-
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ing solution. Additionally, from the graphical representa-
tion, it is apparent that there are two corresponding
times at which the thrown ball is at a given height — one
time in which the ball is traveling upward and an additional
time in which the ball is traveling downward.

Computer scientists have long used the notion of a bin-
ary bit to represent a digital information, wherein 1 indi-
cates that the given element is present and 0 indicates
that the given element is not present [2]. Combining a series
of binary bits enables more states to be represented for a
given element; a two-bit binary sequence can represent four
possible states — 00, 01, 10, 11 — where each element repre-
sents an associated state in the problem. In this same man-
ner, geneticists represent the four possible DNA states with
a quaternary alphabet, using the symbols A, C, G, and T to
encode for each of the four states. Understanding the rela-
tionship among various representations, such as between
the digital binary bit of computer scientist and the DNA
quaternary character of the geneticists, enables one to eas-
ily translate between different representations to approach
the same problem from a new perspective. For example,
translating between the computer scientist’s alphabet and
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the geneticist’s representation is easily accomplished
through a direct substitution of two binary base pairs
encoding for a single quaternary character, as shown in
Fig. 2.

2. Adleman and the Hamiltonian path problem

A Hamiltonian path is defined as a route through an undi-
rected graph which visits each vertex in the graph exactly
once [3]. The Hamiltonian path problem (HPP) aims to find
the lowest cost Hamiltonian path within the graph. One spe-
cific variant of the HPP is the Traveling Salesman Problem
(TSP), where the vertices in the graph represent different cit-
ies, and the edges represent the cost to travel between a set of
cities. For example, given the graph in Fig. 3 [4] where all
edges are bidirectional and have an associated cost of one
unit, a Hamiltonian path starting from city 0 would be
0->1-52-53-54-55-06 with a total cost of seven
units.

In 1994, University of Southern California computer
scientist, Dr. Leonard Adleman solved the Hamiltonian
path problem using DNA as a computational mechanism
[5,6]. Adleman began by using 20-mer oligonucleotide
sequences to uniquely represent each city. Paths were rep-
resented using complementary 20-mer oligonucleotide
sequences generated by combining the last 10 bases of the
starting city with the first 10 bases of the ending city. When
the oligonucleotide sequences were combined, DNA’s
desire to form a stable double helix structure enabled the
paths to be constructed through the combination of the city
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Fig. 1. Trajectory of a ball thrown as a function of time. Changing the
representation of a problem changes the perspective in which it is
approached. In solving for the time at which a thrown ball is at a given
height, it is apparent from the graph that there will be two corresponding
times, while this critical detail is hidden within the equation
representation.

Digital = DNA
01—C 10— G

00— A 11—T

Fig. 2. Conversion between digital bit-based and DNA-based alphabet.
Knowing that DNA uses a base — four alphabets, it is possible to convert a
two-bit digital sequence to the equivalent DNA base and vice versa.

Fig. 3. Traveling Salesman Problem (TSP). TSP, a variant of the
Hamiltonian path problem, aims to find the lowest cost Hamiltonian
path within the graph, where the vertices in the graph represent different
cities, and the edges represent the cost to travel between a set of cities.
Image from Parker [4].

sequences with the complementary edge sequences. For
example, as shown in Fig. 4, the first three sequences rep-
resent 20-mer oligonucleotide representations of three of
the cities — cities 2, 3, and 4. Since a path exists from city
2 to city 3, the last 10 bases from city 2 are combined with
the first 10 bases of the city and the complementary
sequence of this new 20-mer sequence will enable the two
cities to be combined. Since this is not a directed graph,
meaning a path is bidirectional, it is also important to gen-
erate the converse path as well. In other words, the process
must be repeated using the last 10 bases from city 3 with
the first 10 bases of city 2, representing the directed path
from city 3 to city 2.

Once all representations of the cities and corresponding
paths were in place, a large number of copies were gener-
ated to produce all possible combinations of cities and
edges, in effect generating all possible paths through the
graph. Paths that did not meet all of the problem rules were
systematically eliminated. A valid Hamiltonian path
through the cities must have exactly seven vertices present;
all generated paths that were not of this length, whether
too short or too long, were eliminated. Since the path must
visit each city exactly once, sequences with duplicated cities
were also eliminated. Any remaining generated paths are
valid Hamiltonian paths through the graph. If no gener-
ated paths remain, then the graph does not contain any
Hamiltonian paths.

Adleman’s solution to the Hamiltonian path problem
proved that DNA could in principle be used to solve NP-
complete problems. One of the primary benefits of DNA
computing is its ability to make computations in parallel.
This benefit comes at the cost of a lengthy discovery of
the DNA solution. For Adleman’s solution to the Hamilto-
nian path problem, all possible solutions were enumerated
in only a few hours. However, it took approximately 7 days
to climinate all of the invalid paths. While Adleman’s
methodology was slow and inefficient when compared with



C.M. Bogard et al.| Progress in Natural Science 18 (2008) 603-609

605

@=

©O8

@~

20-mer oligonucleotide representing cities

(©F3GCTATTCGAGCTTAAAGCTAES
(OFIGGCTAGGTACCAGCATGCTTES

20-mer oligonucleotide representing
paths between cities

©igOLICTTAAAGCTAGGCTAGGTACKS

DNA representation of the path from city 2 — city 3 — city 4

G CTAGGCTAGGTACKSY

CTATTCGAGCTTAAAG
KICGATAAGCTC

3

GCTATTCGAGEK]

O,

GAATTTCGATE;

e Complement of @

Fig. 4. DNA representation of the Traveling Salesman Problem. Strands of 20-mer oligonucleotide sequences are used to uniquely represent each of the
seven cities in the graph. To represent that a path exists between two cities, the complementary 20-mer oligonucleotide sequence was generated. When
strands were combined within a mixture, DNA’s desire to form double helix structures enables the corresponding Hamiltonian Paths to be created. Image

from Parker [4].

today’s methodology, it is still a lengthy process to biolog-
ically find the DNA solutions among a given mixture.

DNA has the ability to store a vast amount of informa-
tion. Current methods of data storage require approxi-
mately 10'? nm® of space to store a single bit, while DNA
has the ability to store a single bit in only 1 nm? [4]. How-
ever, DNA representation of problems can be difficult.
Adleman represented each city and edge with a 20-mer oli-
gonucleotide sequence to ensure that there would be no
errors in his calculations of the Hamiltonian paths. If one
were to scale the Hamiltonian path problem from the ori-
ginal seven cities to 200 cities, the DNA required to repre-
sent all of the cities and the corresponding edges would be
greater than the weight of earth.

Finally, since Adleman’s experiment was limited to
only seven cities, he could represent the cities with dis-
tinctly different sequences as to minimize the number of
alignments that would result in solutions that do not
exist. However, as the number of cities increase, it
becomes more difficult to uniquely represent the cities in
such a manner as to avoid mismatched alignments. There-
fore, additional error-checking will be required to ensure
accurate solutions.

3. Using multiple sequence alignment in error reduction

DNA allows for a drastic reduction in storage space per
bit compared with traditional digital computing. As a
result, redundant storage capabilities and parallel process-
ing on the exact same data are feasible. However, if the
storage or computation results in inconsistencies, determin-
ing which are correct and which are not is problematic. The
bioinformatics technique of multiple sequence alignment
yields insight into how the issue of data integrity can be
solved.

3.1. Multiple sequence alignment

Multiple sequence alignment is the process of finding a
representative, or consensus, model of the similarities
between three or more sequences. Like pairwise sequence
alignment, it finds an optimal solution for the model con-
ditions placed upon it. If the conditions are changed, then
the model may or may not hold. For a set of highly con-
served sequences, the multiple sequence alignment is easily
seen, even with the naked eye. As the sequences diverge, so
does the complexity of finding the best alignment [7].

Multiple sequence alignment begins by finding the opti-
mal pairwise sequence alignment between each pair of
sequences. Once found, there are a number of approaches
used to discover the underlying model. The top three
approaches are progressive [7], iterative [8], and statistical
or probabilistic modeling [9]. Progressive modeling begins
with the alignment of the two most similar sequences and
iteratively adds sequences to the alignment in descending
order of their similarity. Iterative modeling aligns any pair
of similar sequences or set of sequences, continually clus-
tering until only one group remains.

Finally, statistical or probabilistic modeling selects the
ordering of alignment based on a given statistically or
probabilistic model believed to represent the given set of
sequences. Once a multiple sequence alignment is in place,
it can be described using a number of different approaches.
The most useful of these represents the alignment as a sta-
tistical model, known as a profile Hidden Markov Model
(HMM) [10]. HMMs have the power to represent the align-
ment through states for insertions, deletions, and matches/
mismatches found within the alignment. For the match/
mismatch and insertion states, an associated emission
probability is given to the observed characters for a partic-
ular position.
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3.2. Multiple sequence alignment for error reduction

Since multiple sequence alignment is sensitive to
sequence similarities, it can be used to combine the multiple
copies of the same file to find the most probabilistic con-
tents. There are three scenarios that can be discovered:
(1) areas completely conserved among all of the sequences,
(2) areas highly conserved among the sequences, and (3)
areas not conserved among the sequences. Each of these
scenarios directly corresponds with the level of error within
the region.

First, consider areas that are completely conserved
among all of the sequences. In this case, no mutations have
occurred in any of the file copies. Since the region is an
exact clone of all other copies, there are no discrepancies
introduced and as such, the region is completely 100% free
of errors. For highly conserved areas, discrepancies indi-
cate potential areas that have been introduced. Since a mul-
titude of copies have been stored, then it is probable that
the majority of sequences will be highly correlated. Thus,
the emission properties of the associated Hidden Markov
Model state will clearly indicate which one of the bases is
most probable of being emitted as it will have a signifi-
cantly higher emission over the remaining bases. It is
important to note that pseudocounts should not be intro-
duced within the Hidden Markov Model, as they will skew
the emissions of the state.

Finally, consider areas that are not conserved among the
sequences. It may not be possible to determine the most
probabilistic emission because a significant number of dis-
crepancies have been introduced into the region. Since
there can be no determination as to what the sequence
was originally, this region represents the system state of
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irrecoverable errors. In such circumstances, there are a
number of external alternatives to be considered. An artifi-
cial intelligent agent could be introduced to make the final
determination of the state. Conversely, all of the repre-
sented sequences could be presented to the end user to
make the final determination as to what were the original
contents of the file.

3.3. Improving the multiple sequence alignment

The genetic code allows for a three-base nucleotide
sequence (codon) to encode for one of 20 amino acids
within an organism. Since there are four possible bases
(A, C, G, and T) for each of the three possible bases of
the amino acid, there are a total of 64 possible combina-
tions [7], meaning there are multiple codon representations
that encode for a single amino acid. For example, from the
translation table given in Fig. 5, Lysine (K) is encoded by
AAA and AAG. Thus, a discrepancy between A and G
in the third base would not have a difference in the resulting
amino acid. Likewise, Threonine (T) is encoded by ACT,
ACC, ACA, and ACG, meaning the third base is obsolete
in the determination of the amino acid because all the four
bases translate into Threonine. Consequently, alignment of
the translated amino acid sequences has a greater probabil-
ity of defining more highly conserved regions that may be
indeterminate at a DNA sequence level. Alignment of
regions of low conservation can potentially be improved
by aligning the corresponding translated amino acid
sequences.

While increased accuracy is possible, it comes at a cost
of a dramatic increase in the computational time required
to find the alignment. To translate a DNA sequence into

Amino Acid Symbol IDNA codons

Alanine A GCA | GCC | GCG | GCT

Cystenine C TGC | TGT

Aspartic Acid D GAC | GAT

Glutamic Acid E GAA | GAG

Phenylalanie F TTC TTT

Glycine G GGA | GGC | GGG | GGT

Histidine H CAC | CAT

Isoleucine 1 ATA | ATC | ATT

Lysine K AAA | AAG

Leucine L CTA | CTC | CTG | CTT | TTA | TTG
Methionine (START) M ATG

Asparagine N AAC | AAT

Proline P CCA | CCC | CccG | cCT

Glutamine Q CAA | CAG

Arginine R AGA | AGG | CGA | CGC | CGG | CGT
ine S AGC | AGT | TCA | TCC | TCG | TCT
Threonine T ACA | ACC | ACG | ACT

Valine V GTA | GTC | GTG | GTT

Tryvptophan W TGG

Tyrosine Y TAC | TAT

STOP * TAA | TAG | TGA

Fig. 5. Translation table to convert from a three-base codon to an amino acid. A single amino acid can be encoded by multiple DNA codons. All 64
possible triple base codons are presented with their associated amino acids. Aligning the translated amino acid sequence has a greater probability of
defining more highly conserved regions when compared to aligning the DNA sequence.
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Original sequence: 5'

C H R I )
v I G * A
s * D K H
F D A S H
s M R A I

R C E P b4

TGTCATAGGATAAGCACCTATATGGCTCGCATCGAA 3’
1. TGT CAT AGG ATA AGC ACC TAT ATG GCT CGC ATC GAA
2. GTC ATA GGA TAA GCA CCT ATA TGG CTC GCA TCG

3o TCA TAG GAT AAG CAC CTA TAT GGC TCG CAT CGA

L Y G S H R

4. TTC GAT GCG AGC CAT ATA GGT GCT TAT CCT ATG ACA

5. TCG ATG CGA GCC ATA TAG GTG CTT ATC CTA TGA

6. CGA TGC GAG CCA TAT AGG TGC TTA TCC TAT GAC
R c L S Y D

Y M A R I E

I W L A S

G A Y P M T

v L I L *

Fig. 6. Translation of a single DNA sequence. Translation results in six distinct amino acid sequences arising from each of the three reading frames of the
original sequence in the 5’ direction and each of the three reading frames of the reverse complement.

its corresponding amino acid sequence results in six possi-
ble translations. This is the result of an unknown open-
reading frame, or lack of knowledge as to which base is
the correct starting location of the translation and not a
carryover of the previous amino acid. As such, each of
the first three bases of the DNA sequence must be consid-
ered as a possible starting codon location. Additionally,
since the DNA forms a double helix, one must also con-
sider the first three bases of the reverse complement
sequence as possible codons since there is no decisive
method of determining in which direction the sequence
was originally read. An example translation from a single
DNA sequence to its corresponding six distinct amino acid
sequences is shown in Fig. 6.

Since the pairwise alignment between two nucleotide
sequences is being sought, both sequences must be trans-
lated into their corresponding six amino acid sequences.
All 36 combinations must be considered, aligning each of
the six amino acid sequences from the first translated
DNA sequence with each of the six amino acid sequences
from the second translated DNA sequence. The pairwise
alignment with the highest score is then deemed to be the
best representation of the two sequences. The number of
pairwise alignments between the sequences to be consid-
ered has increased the time and space complexity by a fac-
tor of 36.

3.4. Heuristic improvements of the algorithm

Knowing that the aligned sequences are very similar, if
not identical, there are number of heuristics that can be
applied to reduce the computational, storage, and time
complexity required for the multiple sequence alignment.
Continuing with the discussion of the storage of a file, it
is reasonable to assume that the majority of sequences
being aligned will be of the same length within a given
threshold. Since a file will not produce or reduce the
amount of information contained within it without some
sort of external stimuli, one can quickly eliminate
sequences which disproportionately longer or shorter than
majority of sequences being aligned.

Additionally, since the sequences are highly similar, the
alignment will probabilistically follow the diagonal of the
dynamic programming alignment matrix [11,12]. Thus, per-
forming a bounded alignment in which only cells within a
given threshold above and below the diagonal of the
dynamic programming alignment matrix are calculated will
reduce the computational complexity and the storage com-
plexity required for all of the pairwise sequence alignments
performed. Determining the appropriate threshold is
dependent upon the application; however, for any sequence
set of substantial length, it is reasonable to assume that the
threshold could be set between 5% and 10% and still pro-
duce highly accurate results.

To reduce these complexities even further, an intelligent
agent could retain the probabilities of the identical align-
ments without requiring the actual storage of the align-
ments. Specifically, if two or more of the sequences are
identical, it is inefficient to store the alignment, as the high-
est pairwise alignment is an exact copy of itself. However,
the frequencies of the identical sequences must be retained
in order for the Hidden Markov Model emissions to be
representative of the aligned sequences. If these frequencies
are not retained, then discrepancies in the alignment will be
emphasized as the frequency of the dominate character is
decreased.

4. Discussion

Duplicate copies of a file must be stored for accurate
information retrieval. Fig. 7 shows eight generated strings
to represent eight encoding sequences of a file. Changes
in the sequences are introduced within the sequences to
represent mutations that could occur within a biological
environment.

Alignment of the nucleotide sequences in Fig. 8 reveals
completely conserved, highly conserved, and indeterminate
states within these eight sequences. Completely conserved
states are indicated with bold, uppercase text; highly con-
served and conserved states are indicated with lowercase
text; indeterminate states are indicated with a solid circle.
Using eight nucleotide sequences, a relatively small num-
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TGC GCG CGT GAT ATT AAC TAG CTC TCT
TGC GCC AGG GAT ATT AAC TAG TTG TCA|
TCT GCG CGG GAT ATT AAC TGA CTC TCT
TGC GCG CGG GAC ATT AAC TGA CTC TCG
TCG GCA CGT GAT ATT AAC TAG CTT TCT
TCG GCT CGG GAT ATT AAT TAA TTG TCT
TGC GCA AGG GAT ATT AAT TAG CTT TCT
TGT GCG AGA GAT ATT ACC TGA CTC TCA]

Fig. 7. DNA sequences representing stored information. Generated
strings are created to represent possible information stored in genetic
sequences. Changes are introduced to mimic mutations occurring in a
biological environment.

Alignment: Tgc GCg cGg GAt ATT Aac Tae cTc TCt

Fig. 8. Alignment of the eight nucleotide sequences. Alignment of the
eight nucleotide sequences reveals only fourteen of the twenty-seven bases
are completely conserved, or just over half. Twelve bases are determined
based on the highest emitted nucleotide. One base is indeterminate based
on the emission probabilities.

ber, results in only 14 of the 27 bases being completely con-
served, or 51.9%. While only one state is indeterminate, 12
states are determined based on the highest emission proba-
bility across the eight sequences, with the lowest confidence
of 50%, the highest confidence of 87.5%, and an average
confidence of 65.6%.

Using the amino acid translation table described above,
the 27 base polynucleotide chains can be converted into the
corresponding amino acid sequences, as shown in Fig. 9.
Recognizing there are six reading frames per sequence
means there are 36 comparisons for each pairwise align-
ment. This number goes exponentially when completing
multiple sequence alignment; for eight sequences, 40,320
comparisons are required to complete the alignment.

Using the highest scores found in a progressive align-
ment methodology, the multiple sequence alignment results
in significant reduction of discrepancies and eliminates the
indeterminate state. The multiple sequence alignment of
the amino acid chains, as shown in Fig. 10, results in six
of the nine bases being completely conserved, or approxi-
mately 66.7%. Conserved regions, determined by the emis-
sion probabilities of the bases for the state, have a higher
level of confidence; determination of the state has increased
from a simple emission majority meeting a confidence of
50% to significant emission probability with a confidence
of 87.5% in all three conserved regions.

5. Conclusions

This research presents a novel approach in which DNA
could theoretically be used as a means of storing files.
Through the use of multiple sequence alignment combined
with intelligent heuristics, the most probabilistic file con-
tents can be determined with the minimal errors. Com-
pletely conserved regions have no discrepancies and as
such are 100% error-free. Highly conserved regions have

1. TGC GCG CGT GAT ATT AAC TAG CTC TCT
C A R D I N * L S
2. GCG CGC GTG ATA TTA ACT AGC TCT
A R \'4 I L T s s
3. CGC GCG TGA TAT TAA CTA GCT CTC
R a * Y * L A L
4. AGA GAG CTA GTT AAT ATC ACG CGC GCA
R E L Vv N I T R A
5. GAG AGC TAG TTA ATA TCA CGC GCG
E s * L I ) R A
5. AGA GCT AGT TAA TAT CAC GCG CGC
R A s * Y H A R

Fig. 9. Translation of polynucleotide chain into corresponding amino acid
chain. Translation results in six distinct amino acid sequences arising from
each of the three reading frames in the 5" direction and each of the three
reading frames in the 3’ direction of the original sequence.

CAR DIN *LS
CAR DIN *LS
CAR DIN *LS
CAR DIN *LS
CPR DIN *LS
CAR DIN *LS
CAS DIN *LS
CAR DIN ALS
Alignment: Car DIN *LS

Fig. 10. Alignment of the converted amino acid sequences from Fig 7.
Converting the eight nucleotide sequences to the corresponding amino
acid sequences before alignment results in an increased confidence in the
multiple sequence alignment.

minimal discrepancies, whose correct content can be deter-
mined based on the emission probabilities of the associated
Hidden Markov Model. Finally, poorly conserved regions
represent the most difficult areas because of the high dis-
crepancies with low-emission probabilities. However, using
the associated translated amino acid sequences, it is possi-
ble to improve the accuracy of the region’s emission prob-
abilities with multiple codons encoding a single amino acid.
Adleman hypothesized that “for the long-term, one can
only speculate about the prospects for molecular computa-
tion” [5]. With each new theory introduced, we move closer
to the practical applications afforded by DNA computing.
It is unrealistic to predict DNA computing will form the
sole basis of the next generation of technology; however,
when combined with current technologies, could form a
hybridization capable of achieving the fast computational
benefits of DNA with the flexibility of current silicon.
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